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Data, measurement and empirical methods 
in the science of science

Lu Liu1,2,3,4, Benjamin F. Jones    1,2,3,5,6, Brian Uzzi    1,2,3 & Dashun Wang    1,2,3,7 

The advent of large-scale datasets that trace the workings of science has 
encouraged researchers from many different disciplinary backgrounds to 
turn scientific methods into science itself, cultivating a rapidly expanding 
‘science of science’. This Review considers this growing, multidisciplinary 
literature through the lens of data, measurement and empirical methods. 
We discuss the purposes, strengths and limitations of major empirical 
approaches, seeking to increase understanding of the field’s diverse 
methodologies and expand researchers’ toolkits. Overall, new empirical 
developments provide enormous capacity to test traditional beliefs and 
conceptual frameworks about science, discover factors associated with 
scientific productivity, predict scientific outcomes and design policies that 
facilitate scientific progress.

Scientific advances are a key input to rising standards of living, health 
and the capacity of society to confront grand challenges, from climate 
change to the COVID-19 pandemic1–3. A deeper understanding of how 
science works and where innovation occurs can help us to more effec-
tively design science policy and science institutions, better inform sci-
entists’ own research choices, and create and capture enormous value 
for science and humanity. Building on these key premises, recent years 
have witnessed substantial development in the ‘science of science’4–9, 
which uses large-scale datasets and diverse computational toolkits to 
unearth fundamental patterns behind scientific production and use.

The idea of turning scientific methods into science itself is 
long-standing. Since the mid-20th century, researchers from differ-
ent disciplines have asked central questions about the nature of scien-
tific progress and the practice, organization and impact of scientific 
research. Building on these rich historical roots, the field of the science 
of science draws upon many disciplines, ranging from information 
science to the social, physical and biological sciences to computer sci-
ence, engineering and design. The science of science closely relates to 
several strands and communities of research, including metascience, 
scientometrics, the economics of science, research on research, science 
and technology studies, the sociology of science, metaknowledge and 
quantitative science studies5. There are noticeable differences between 
some of these communities, mostly around their historical origins 

and the initial disciplinary composition of researchers forming these 
communities. For example, metascience has its origins in the clinical 
sciences and psychology, and focuses on rigour, transparency, repro-
ducibility and other open science-related practices and topics. The 
scientometrics community, born in library and information sciences, 
places a particular emphasis on developing robust and responsible 
measures and indicators for science. Science and technology stud-
ies engage the history of science and technology, the philosophy of 
science, and the interplay between science, technology and society. 
The science of science, which has its origins in physics, computer 
science and sociology, takes a data-driven approach and emphasizes 
questions on how science works. Each of these communities has made 
fundamental contributions to understanding science. While they differ 
in their origins, these differences pale in comparison to the overarch-
ing, common interest in understanding the practice of science and its 
societal impact.

Three major developments have encouraged rapid advances in 
the science of science. The first is in data9: modern databases include 
millions of research articles, grant proposals, patents and more. 
This windfall of data traces scientific activity in remarkable detail 
and at scale. The second development is in measurement: scholars 
have used data to develop many new measures of scientific activities 
and examine theories that have long been viewed as important but 
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evolve over a scientific career28–32, and how may diversity among scien-
tists advance scientific progress33–35, among other questions relevant 
to science policy36,37.

Overall, this review aims to facilitate entry to science of science 
research, expand researcher toolkits and illustrate how diverse research 
approaches contribute to our collective understanding of science. 
Section 2 reviews datasets and data linkages. Section 3 reviews major 
measurement constructs in the science of science. Section 4 considers 
a range of empirical methods, focusing on one study to illustrate each 
method and briefly summarizing related examples and applications. 
Section 5 concludes with an outlook for the science of science.

Data
Historically, data on scientific activities were difficult to collect and 
were available in limited quantities. Gathering data could involve manu-
ally tallying statistics from publications38,39, interviewing scientists16,40, 
or assembling historical anecdotes and biographies13,41. Analyses were 
typically limited to a specific domain or group of scientists. Today, 
massive datasets on scientific production and use are at researchers’ 
fingertips42–44. Armed with big data and advanced algorithms, research-
ers can now probe questions previously not amenable to quantification 
and with enormous increases in scope and scale, as detailed below.

Publication datasets cover papers from nearly all scientific disci-
plines, enabling analyses of both general and domain-specific patterns. 
Commonly used datasets include the Web of Science (WoS), PubMed, 
CrossRef, ORCID, OpenCitations, Dimensions and OpenAlex. Datasets 
incorporating papers’ text (CORE)45–47, data entities (DataCite)48,49 and 
peer review reports (Publons)33,50,51 have also become available. These 
datasets further enable novel measurement, for example, representa-
tions of a paper’s content52,53, novelty15,54 and interdisciplinarity55.

Notably, databases today capture more diverse aspects of science 
beyond publications, offering a richer and more encompassing view of 
research contexts and of researchers themselves (Fig. 1). For example, 

difficult to quantify. The third development is in empirical methods: 
thanks to parallel advances in data science, network science, artifi-
cial intelligence and econometrics, researchers can study relation-
ships, make predictions and assess science policy in powerful new 
ways. Together, new data, measurements and methods have revealed 
fundamental new insights about the inner workings of science and 
scientific progress itself.

With multiple approaches, however, comes a key challenge. 
As researchers adhere to norms respected within their disciplines, 
their methods vary, with results often published in venues with 
non-overlapping readership, fragmenting research along discipli-
nary boundaries. This fragmentation challenges researchers’ ability 
to appreciate and understand the value of work outside of their own 
discipline, much less to build directly on it for further investigations.

Recognizing these challenges and the rapidly developing nature 
of the field, this paper reviews the empirical approaches that are preva-
lent in this literature. We aim to provide readers with an up-to-date 
understanding of the available datasets, measurement constructs and 
empirical methodologies, as well as the value and limitations of each. 
Owing to space constraints, this Review does not cover the full techni-
cal details of each method, referring readers to related guides to learn 
more. Instead, we will emphasize why a researcher might favour one 
method over another, depending on the research question.

Beyond a positive understanding of science, a key goal of the sci-
ence of science is to inform science policy. While this Review mainly 
focuses on empirical approaches, with its core audience being research-
ers in the field, the studies reviewed are also germane to key policy 
questions. For example, what is the appropriate scale of scientific 
investment, in what directions and through what institutions10,11? Are 
public investments in science aligned with public interests12? What con-
ditions produce novel or high-impact science13–20? How do the reward 
systems of science influence the rate and direction of progress13,21–24, 
and what governs scientific reproducibility25–27? How do contributions 

Data are the key to the quantitative understanding of papers, individuals, teams, funding, application and broad impact.
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Fig. 1 | Science of science data and linkages. This figure presents commonly 
used data types in science of science research, information contained in 
each data type and examples of data sources. Datasets in the science of 

science research have not only grown in scale but have also expanded beyond 
publications to integrate upstream funding investments and downstream 
applications that extend beyond science itself.
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some datasets trace research funding to the specific publications these 
investments support56,57, allowing high-scale studies of the impact of 
funding on productivity and the return on public investment. Datasets 
incorporating job placements58,59, curriculum vitae21,59 and scientific 
prizes23 offer rich quantitative evidence on the social structure of sci-
ence. Combining publication profiles with mentorship genealogies60,61, 
dissertations34 and course syllabi62,63 provides insights on mentoring 
and cultivating talent.

Finally, today’s scope of data extends beyond science to broader 
aspects of society. Altmetrics64 captures news media and social media 
mentions of scientific articles. Other databases incorporate marketplace 
uses of science, including through patents10, pharmaceutical clinical tri-
als and drug approvals65,66. Policy documents67,68 help us to understand 
the role of science in the halls of government69 and policy making12,68.

While datasets of the modern scientific enterprise have grown 
exponentially, they are not without limitations. As is often the case for 
data-driven research, drawing conclusions from specific data sources 
requires scrutiny and care. Datasets are typically based on published 
work, which may favour easy-to-publish topics over important ones 
(the streetlight effect)70,71. The publication of negative results is also 
rare (the file drawer problem)72,73. Meanwhile, English language pub-
lications account for over 90% of articles in major data sources, with 
limited coverage of non-English journals74. Publication datasets may 
also reflect biases in data collection across research institutions or 
demographic groups. Despite the open science movement, many 
datasets require paid subscriptions, which can create inequality in data 
access. Creating more open datasets for the science of science, such 
as OpenAlex, may not only improve the robustness and replicability of 
empirical claims but also increase entry to the field.

As today’s datasets become larger in scale and continue to inte-
grate new dimensions, they offer opportunities to unveil the inner 
workings and external impacts of science in new ways. They can enable 
researchers to reach beyond previous limitations while conducting 
original studies of new and long-standing questions about the sciences.

Measurement
Here we discuss prominent measurement approaches in the science 
of science, including their purposes and limitations.

Citations
Modern publication databases typically include data on which articles 
and authors cite other papers and scientists. These citation linkages 
have been used to engage core conceptual ideas in scientific research. 
Here we consider two common measures based on citation informa-
tion: citation counts and knowledge flows.

First, citation counts are commonly used indicators of impact. 
The term ‘indicator’ implies that it only approximates the concept of 
interest. A citation count is defined as how many times a document is 
cited by subsequent documents and can proxy for the importance of 
research papers75,76 as well as patented inventions77–79. Rather than treat-
ing each citation equally, measures may further weight the importance 
of each citation, for example by using the citation network structure 
to produce centrality80, PageRank81,82 or Eigenfactor indicators83,84.

Citation-based indicators have also faced criticism84,85. Citation 
indicators necessarily oversimplify the construct of impact, often 
ignoring heterogeneity in the meaning and use of a particular refer-
ence, the variations in citation practices across fields and institutional 
contexts, and the potential for reputation and power structures in 
science to influence citation behaviour86,87. Researchers have started 
to understand more nuanced citation behaviours ranging from nega-
tive citations86 to citation context47,88,89. Understanding what a citation 
actually measures matters in interpreting and applying many research 
findings in the science of science. Evaluations relying on citation-based 
indicators rather than expert judgements raise questions regarding 
misuse90–92. Given the importance of developing indicators that can 

reliably quantify and evaluate science, the scientometrics community 
has been working to provide guidance for responsible citation practices 
and assessment85.

Second, scientists use citations to trace knowledge flows. Each 
citation in a paper is a link to specific previous work from which we 
can proxy how new discoveries draw upon existing ideas76,93 and how 
knowledge flows between fields of science94,95, research institutions96, 
regions and nations97–99, and individuals81. Combinations of citation 
linkages can also approximate novelty15, disruptiveness17,100 and inter-
disciplinarity55,95,101,102. A rapidly expanding body of work further exam-
ines citations to scientific articles from other domains (for example, 
patents, clinical drug trials and policy documents) to understand the 
applied value of science10,12,65,66,103–105.

Individuals
Analysing individual careers allows researchers to answer questions 
such as: How do we quantify individual scientific productivity? What 
is a typical career lifecycle? How are resources and credits allocated 
across individuals and careers? A scholar’s career can be examined 
through the papers they publish30,31,106–108, with attention to career 
progression and mobility, publication counts and citation impact, as 
well as grant funding24,109,110 and prizes111–113,

Studies of individual impact focus on output, typically approxi-
mated by the number of papers a researcher publishes and citation 
indicators. A popular measure for individual impact is the h-index114, 
which takes both volume and per-paper impact into consideration. Spe-
cifically, a scientist is assigned the largest value h such that they have h 
papers that were each cited at least h times. Later studies build on the 
idea of the h-index and propose variants to address limitations115, these 
variants ranging from emphasizing highly cited papers in a career116, to 
field differences117 and normalizations118, to the relative contribution 
of an individual in collaborative works119.

To study dynamics in output over the lifecycle, individuals can be 
studied according to age, career age or the sequence of publications. A 
long-standing literature has investigated the relationship between age 
and the likelihood of outstanding achievement28,106,111,120,121. Recent stud-
ies further decouple the relationship between age, publication volume 
and per-paper citation, and measure the likelihood of producing highly 
cited papers in the sequence of works one produces30,31.

As simple as it sounds, representing careers using publication 
records is difficult. Collecting the full publication list of a researcher 
is the foundation to study individuals yet remains a key challenge, 
requiring name disambiguation techniques to match specific works 
to specific researchers. Although algorithms are increasingly capa-
ble at identifying millions of career profiles122, they vary in accuracy 
and robustness. ORCID can help to alleviate the problem by offering 
researchers the opportunity to create, maintain and update individual 
profiles themselves, and it goes beyond publications to collect broader 
outputs and activities123. A second challenge is survivorship bias. Empir-
ical studies tend to focus on careers that are long enough to afford 
statistical analyses, which limits the applicability of the findings to sci-
entific careers as a whole. A third challenge is the breadth of scientists’ 
activities, where focusing on publications ignores other important 
contributions such as mentorship and teaching, service (for example, 
refereeing papers, reviewing grant proposals and editing journals) 
or leadership within their organizations. Although researchers have 
begun exploring these dimensions by linking individual publication 
profiles with genealogical databases61,124, dissertations34, grants109, 
curriculum vitae21 and acknowledgements125, scientific careers beyond 
publication records remain under-studied126,127. Lastly, citation-based 
indicators only serve as an approximation of individual performance 
with similar limitations as discussed above. The scientific community 
has called for more appropriate practices85,128, ranging from incorpo-
rating expert assessment of research contributions to broadening the 
measures of impact beyond publications.
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Teams
Over many decades, science has exhibited a substantial and steady shift 
away from solo authorship towards coauthorship, especially among 
highly cited works18,129,130. In light of this shift, a research field, the sci-
ence of team science131,132, has emerged to study the mechanisms that 
facilitate or hinder the effectiveness of teams. Team size can be proxied 
by the number of coauthors on a paper, which has been shown to predict 
distinctive types of advance: whereas larger teams tend to develop 
ideas, smaller teams tend to disrupt current ways of thinking17. Team 
characteristics can be inferred from coauthors’ backgrounds133–135, 
allowing quantification of a team’s diversity in terms of field, age, gen-
der or ethnicity. Collaboration networks based on coauthorship130,136–139 
offer nuanced network-based indicators to understand individual and 
institutional collaborations.

However, there are limitations to using coauthorship alone to 
study teams132. First, coauthorship can obscure individual roles140–142, 
which has prompted institutional responses to help to allocate credit, 
including authorship order and individual contribution statements56,143. 
Second, coauthorship does not reflect the complex dynamics and inter-
actions between team members that are often instrumental for team 
success53,144. Third, collaborative contributions can extend beyond 
coauthorship in publications to include members of a research labo-
ratory145 or co-principal investigators (co-PIs) on a grant146. Initiatives 
such as CRediT may help to address some of these issues by recording 
detailed roles for each contributor147.

Institutions
Research institutions, such as departments, universities, national labo-
ratories and firms, encompass wider groups of researchers and their 
corresponding outputs. Institutional membership can be inferred 
from affiliations listed on publications or patents148,149, and the output 
of an institution can be aggregated over all its affiliated researchers150. 
Institutional research information systems (CRIS) contain more com-
prehensive research outputs and activities from employees.

Some research questions consider the institution as a whole, 
investigating the returns to research and development investment104, 
inequality of resource allocation22 and the flow of scientists21,148,149. 
Other questions focus on institutional structures as sources of research 
productivity by looking into the role of peer effects125,151–153, how institu-
tional policies impact research outcomes154,155 and whether interdisci-
plinary efforts foster innovation55. Institution-oriented measurement 
faces similar limitations as with analyses of individuals and teams, 
including name disambiguation for a given institution and the limited 
capacity of formal publication records to characterize the full range 
of relevant institutional outcomes. It is also unclear how to allocate 
credit among multiple institutions associated with a paper. Moreover, 
relevant institutional employees extend beyond publishing research-
ers: interns, technicians and administrators all contribute to research 
endeavours130.

In sum, measurements allow researchers to quantify scientific 
production and use across numerous dimensions, but they also raise 
questions of construct validity: Does the proposed metric really reflect 
what we want to measure? Testing the construct’s validity is impor-
tant, as is understanding a construct’s limits. Where possible, using 
alternative measurement approaches, or qualitative methods such as 
interviews and surveys, can improve measurement accuracy and the 
robustness of findings.

Empirical methods
In this section, we review two broad categories of empirical approaches 
(Table 1), each with distinctive goals: (1) to discover, estimate and pre-
dict empirical regularities; and (2) to identify causal mechanisms. For 
each method, we give a concrete example to help to explain how the 
method works, summarize related work for interested readers, and 
discuss contributions and limitations.

Descriptive and predictive approaches
Empirical regularities and generalizable facts. The discovery of 
empirical regularities in science has had a key role in driving concep-
tual developments and the directions of future research. By observing 
empirical patterns at scale, researchers unveil central facts that shape 
science and present core features that theories of scientific progress 
and practice must explain. For example, consider citation distributions. 
de Solla Price first proposed that citation distributions are fat-tailed39, 
indicating that a few papers have extremely high citations while most 
papers have relatively few or even no citations at all. de Solla Price 
proposed that citation distribution was a power law, while research-
ers have since refined this view to show that the distribution appears 
log-normal, a nearly universal regularity across time and fields156,157. The 
fat-tailed nature of citation distributions and its universality across the 
sciences has in turn sparked substantial theoretical work that seeks to 
explain this key empirical regularity20,156,158,159.

Empirical regularities are often surprising and can contest previ-
ous beliefs of how science works. For example, it has been shown that 
the age distribution of great achievements peaks in middle age across 
a wide range of fields107,121,160, rejecting the common belief that young 
scientists typically drive breakthroughs in science. A closer look at the 

Table 1 | Empirical approaches in science of science 
research

Category Method Core objectives and 
contributions

Descriptive 
and predictive 
approaches

Empirical regularities 
and generalizable facts

Establish observational 
regularities about science; 
confirm or reject existing 
theories or hypotheses; 
provide novel discoveries 
motivating new theory

Classic regression Engage formal hypothesis 
testing about relationships 
between variables and 
estimate their precision 
and magnitude

Mechanistic models Model fundamental data 
generating processes; 
provide falsifiable tests of 
formal theory

Machine learning Represent data with 
multiple levels of 
abstraction; provide 
superior predictive 
accuracy

Causal approaches

Matching and fixed 
effects

Reduce bias in regression 
estimation and come 
closer to causal inference; 
provide more effective 
controls for characteristics 
that may otherwise drive 
correlations

Quasi-experiments Exploit innate randomness 
in the data context to allow 
causal inference about 
the relationship between 
variables

Experiments Construct formal 
experiments in 
well-controlled 
environments to deliver 
causal inference and study 
specific mechanisms and 
interventions

This table provides a schematic overview for section 4, organizing empirical methods 
according to types of research questions and methodological goals that are commonly used 
in science of science research.
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individual careers also indicates that productivity patterns vary widely 
across individuals29. Further, a scholar’s highest-impact papers come 
at a remarkably constant rate across the sequence of their work30,31.

The discovery of empirical regularities has had important roles in 
shaping beliefs about the nature of science10,45,161,162, sources of break-
through ideas15,163–165, scientific careers21,29,126,127, the network structure 
of ideas and scientists23,98,136–139,166, gender inequality57,108,126,135,143,167,168, 
and many other areas of interest to scientists and science institu-
tions22,47,86,97,102,105,134,169–171. At the same time, care must be taken to ensure 
that findings are not merely artefacts due to data selection or inherent 
bias. To differentiate meaningful patterns from spurious ones, it is 
important to stress test the findings through different selection criteria 
or across non-overlapping data sources.

Regression analysis. When investigating correlations among vari-
ables, a classic method is regression, which estimates how one set of 
variables explains variation in an outcome of interest. Regression can 
be used to test explicit hypotheses or predict outcomes. For example, 
researchers have investigated whether a paper’s novelty predicts its 
citation impact172. Adding additional control variables to the regres-
sion, one can further examine the robustness of the focal relationship.

Although regression analysis is useful for hypothesis testing, it 
bears substantial limitations. If the question one wishes to ask concerns 
a ‘causal’ rather than a correlational relationship, regression is poorly 
suited to the task as it is impossible to control for all the confounding 
factors. Failing to account for such ‘omitted variables’ can bias the 
regression coefficient estimates and lead to spurious interpretations. 
Further, regression models often have low goodness of fit (small R2), 
indicating that the variables considered explain little of the outcome 
variation. As regressions typically focus on a specific relationship in 
simple functional forms, regressions tend to emphasize interpretability 
rather than overall predictability. The advent of predictive approaches 
powered by large-scale datasets and novel computational techniques 
offers new opportunities for modelling complex relationships with 
stronger predictive power.

Mechanistic models. Mechanistic modelling is an important approach 
to explaining empirical regularities, drawing from methods primarily 
used in physics. Such models predict macro-level regularities of a sys-
tem by modelling micro-level interactions among basic elements with 
interpretable and modifiable formulars. While theoretical by nature, 
mechanistic models in the science of science are often empirically 
grounded, and this approach has developed together with the advent 
of large-scale, high-resolution data.

Simplicity is the core value of a mechanistic model. Consider for 
example, why citations follow a fat-tailed distribution. de Solla Price 
modelled the citing behaviour as a cumulative advantage process 
on a growing citation network159 and found that if the probability a 
paper is cited grows linearly with its existing citations, the resulting 
distribution would follow a power law, broadly aligned with empirical 
observations. The model is intentionally simplified, ignoring myr-
iad factors. Yet the simple cumulative advantage process is by itself 
sufficient in explaining a power law distribution of citations. In this 
way, mechanistic models can help to reveal key mechanisms that can 
explain observed patterns.

Moreover, mechanistic models can be refined as empirical evi-
dence evolves. For example, later investigations showed that citation 
distributions are better characterized as log-normal156,173, prompting 
researchers to introduce a fitness parameter to encapsulate the inher-
ent differences in papers’ ability to attract citations174,175. Further, older 
papers are less likely to be cited than expected176–178, motivating more 
recent models20 to introduce an additional aging effect179. By combining 
the cumulative advantage, fitness and aging effects, one can already 
achieve substantial predictive power not just for the overall properties 
of the system but also the citation dynamics of individual papers20.

In addition to citations, mechanistic models have been developed 
to understand the formation of collaborations136,180–183, knowledge 
discovery and diffusion184,185, topic selection186,187, career dynam-
ics30,31,188,189, the growth of scientific fields190 and the dynamics of failure 
in science and other domains178.

At the same time, some observers have argued that mechanistic 
models are too simplistic to capture the essence of complex real-world 
problems191. While it has been a cornerstone for the natural sciences, 
representing social phenomena in a limited set of mathematical equa-
tions may miss complexities and heterogeneities that make social 
phenomena interesting in the first place. Such concerns are not unique 
to the science of science, as they represent a broader theme in computa-
tional social sciences192,193, ranging from social networks194,195 to human 
mobility196,197 to epidemics198,199. Other observers have questioned 
the practical utility of mechanistic models and whether they can be 
used to guide decisions and devise actionable policies. Nevertheless, 
despite these limitations, several complex phenomena in the science 
of science are well captured by simple mechanistic models, showing 
a high degree of regularity beneath complex interacting systems and 
providing powerful insights about the nature of science. Mixing such 
modelling with other methods could be particularly fruitful in future 
investigations.

Machine learning. The science of science seeks in part to forecast 
promising directions for scientific research7,44. In recent years, machine 
learning methods have substantially advanced predictive capabili-
ties200,201 and are playing increasingly important parts in the science of 
science. In contrast to the previous methods, machine learning does 
not emphasize hypotheses or theories. Rather, it leverages complex 
relationships in data and optimizes goodness of fit to make predictions 
and categorizations.

Traditional machine learning models include supervised, 
semi-supervised and unsupervised learning. The model choice 
depends on data availability and the research question, ranging from 
supervised models for citation prediction202,203 to unsupervised models 
for community detection204. Take for example mappings of scien-
tific knowledge94,205,206. The unsupervised method applies network 
clustering algorithms to map the structures of science. Related visu-
alization tools make sense of clusters from the underlying network, 
allowing observers to see the organization, interactions and evolu-
tion of scientific knowledge. More recently, supervised learning, and 
deep neural networks in particular, have witnessed especially rapid 
developments207. Neural networks can generate high-dimensional 
representations of unstructured data such as images and texts, which 
encode complex properties difficult for human experts to perceive.

Take text analysis as an example. A recent study52 utilizes 3.3 mil-
lion paper abstracts in materials science to predict the thermoelectric 
properties of materials. The intuition is that the words currently used 
to describe a material may predict its hitherto undiscovered properties 
(Fig. 2). Compared with a random material, the materials predicted by 
the model are eight times more likely to be reported as thermoelectric 
in the next 5 years, suggesting that machine learning has the potential 
to substantially speed up knowledge discovery, especially as data 
continue to grow in scale and scope. Indeed, predicting the direction 
of new discoveries represents one of the most promising avenues for 
machine learning models, with neural networks being applied widely 
to biology208, physics209,210, mathematics211, chemistry212, medicine213 
and clinical applications214. Neural networks also offer a quantitative 
framework to probe the characteristics of creative products ranging 
from scientific papers53, journals215, organizations148, to paintings and 
movies32. Neural networks can also help to predict the reproducibility 
of papers from a variety of disciplines at scale53,216.

While machine learning can offer high predictive accuracy, suc-
cessful applications to the science of science face challenges, particu-
larly regarding interpretability. Researchers may value transparent and 
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interpretable findings for how a given feature influences an outcome, 
rather than a black-box model. The lack of interpretability also raises 
concerns about bias and fairness. In predicting reproducible patterns 
from data, machine learning models inevitably include and reproduce 
biases embedded in these data, often in non-transparent ways. The 
fairness of machine learning217 is heavily debated in applications rang-
ing from the criminal justice system to hiring processes. Effective and 
responsible use of machine learning in the science of science therefore 
requires thoughtful partnership between humans and machines53 to 
build a reliable system accessible to scrutiny and modification.

Causal approaches
The preceding methods can reveal core facts about the workings of 
science and develop predictive capacity. Yet, they fail to capture causal 
relationships, which are particularly useful in assessing policy interven-
tions. For example, how can we test whether a science policy boosts 
or hinders the performance of individuals, teams or institutions? The 
overarching idea of causal approaches is to construct some counter-
factual world where two groups are identical to each other except that 
one group experiences a treatment that the other group does not.

Towards causation. Before engaging in causal approaches, it is use-
ful to first consider the interpretative challenges of observational 
data. As observational data emerge from mechanisms that are not 
fully known or measured, an observed correlation may be driven by 
underlying forces that were not accounted for in the analysis. This 
challenge makes causal inference fundamentally difficult in observa-
tional data. An awareness of this issue is the first step in confronting it. 
It further motivates intermediate empirical approaches, including the 
use of matching strategies and fixed effects, that can help to confront 
(although not fully eliminate) the inference challenge. We first consider 
these approaches before turning to more fully causal methods.

Matching. Matching utilizes rich information to construct a control 
group that is similar to the treatment group on as many observable 
characteristics as possible before the treatment group is exposed to the 
treatment. Inferences can then be made by comparing the treatment 
and the matched control groups. Exact matching applies to categorical 
values, such as country, gender, discipline or affiliation35,218. Coarsened 

exact matching considers percentile bins of continuous variables and 
matches observations in the same bin133. Propensity score matching 
estimates the probability of receiving the ‘treatment’ on the basis of 
the controlled variables and uses the estimates to match treatment 
and control groups, which reduces the matching task from compar-
ing the values of multiple covariates to comparing a single value24,219. 
Dynamic matching is useful for longitudinally matching variables that 
change over time220,221.

Fixed effects. Fixed effects are a powerful and now standard tool in 
controlling for confounders. A key requirement for using fixed effects 
is that there are multiple observations on the same subject or entity 
(person, field, institution and so on)222–224. The fixed effect works as a 
dummy variable that accounts for the role of any fixed characteristic of 
that entity. Consider the finding where gender-diverse teams produce 
higher-impact papers than same-gender teams do225. A confounder may 
be that individuals who tend to write high-impact papers may also be 
more likely to work in gender-diverse teams. By including individual 
fixed effects, one accounts for any fixed characteristics of individuals 
(such as IQ, cultural background or previous education) that might 
drive the relationship of interest.

In sum, matching and fixed effects methods reduce potential 
sources of bias in interpreting relationships between variables. Yet, 
confounders may persist in these studies. For instance, fixed effects 
do not control for unobserved factors that change with time within the 
given entity (for example, access to funding or new skills). Identifying 
casual effects convincingly will then typically require distinct research 
methods that we turn to next.

Quasi-experiments. Researchers in economics and other fields have 
developed a range of quasi-experimental methods to construct treat-
ment and control groups. The key idea here is exploiting randomness 
from external events that differentially expose subjects to a particu-
lar treatment. Here we review three quasi-experimental methods: 
difference-in-differences, instrumental variables and regression dis-
continuity (Fig. 3).

Difference-in-differences. Difference-in-difference regression (DiD) 
investigates the effect of an unexpected event, comparing the affected 
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group (the treated group) with an unaffected group (the control group). 
The control group is intended to provide the counterfactual path—what 
would have happened were it not for the unexpected event. Ideally, the 
treated and control groups are on virtually identical paths before the 
treatment event, but DiD can also work if the groups are on parallel 
paths (Fig. 3a). For example, one study226 examines how the premature 
death of superstar scientists affects the productivity of their previous 
collaborators. The control group are collaborators of superstars who 
did not die in the time frame. The two groups do not show significant 
differences in publications before a death event, yet upon the death 
of a star scientist, the treated collaborators on average experience 
a 5–8% decline in their quality-adjusted publication rates compared 
with the control group. DiD has wide applicability in the science of sci-
ence, having been used to analyse the causal effects of grant design24, 
access costs to previous research155,227, university technology transfer 
policies154, intellectual property228, citation practices229, evolution of 
fields221 and the impacts of paper retractions230–232. The DiD literature 
has grown especially rapidly in the field of economics, with substantial 
recent refinements233,234.

Instrumental variables. Another quasi-experimental approach uti-
lizes ‘instrumental variables’ (IV). The goal is to determine the causal 
influence of some feature X on some outcome Y by using a third, instru-
mental variable. This instrumental variable is a quasi-random event 
that induces variation in X and, except for its impact through X, has no 
other effect on the outcome Y (Fig. 3b). For example, consider a study 
of astronomy that seeks to understand how telescope time affects 
career advancement235. Here, one cannot simply look at the correlation 
between telescope time and career outcomes because many confounds 
(such as talent or grit) may influence both telescope time and career 
opportunities. Now consider the weather as an instrumental variable. 
Cloudy weather will, at random, reduce an astronomer’s observational 
time. Yet, the weather on particular nights is unlikely to correlate with 
a scientist’s innate qualities. The weather can then provide an instru-
mental variable to reveal a causal relationship between telescope time 
and career outcomes. Instrumental variables have been used to study 
local peer effects in research151, the impact of gender composition in 
scientific committees236, patents on future innovation237 and taxes on 
inventor mobility238.

Regression discontinuity. In regression discontinuity, policies with an 
arbitrary threshold for receiving some benefit can be used to construct 
treatment and control groups (Fig. 3c). Take the funding paylines for 
grant proposals as an example. Proposals with scores increasingly 
close to the payline are increasingly similar in their both observable 
and unobservable characteristics, yet only those projects with scores 
above the payline receive the funding. For example, a study110 exam-
ines the effect of winning an early-career grant on the probability of 
winning a later, mid-career grant. The probability has a discontinuous 
jump across the initial grant’s payline, providing the treatment and 
control groups needed to estimate the causal effect of receiving a 

grant. This example utilizes the ‘sharp’ regression discontinuity that 
assumes treatment status to be fully determined by the cut-off. If we 
assume treatment status is only partly determined by the cut-off, we 
can use ‘fuzzy’ regression discontinuity designs. Here the probability 
of receiving a grant is used to estimate the future outcome11,110,239–241.

Although quasi-experiments are powerful tools, they face their 
own limitations. First, these approaches identify causal effects within a 
specific context and often engage small numbers of observations. How 
representative the samples are for broader populations or contexts 
is typically left as an open question. Second, the validity of the causal 
design is typically not ironclad. Researchers usually conduct different 
robustness checks to verify whether observable confounders have 
significant differences between the treated and control groups, before 
treatment. However, unobservable features may still differ between 
treatment and control groups. The quality of instrumental variables 
and the specific claim that they have no effect on the outcome except 
through the variable of interest, is also difficult to assess. Ultimately, 
researchers must rely partly on judgement to tell whether appropriate 
conditions are met for causal inference.

This section emphasized popular econometric approaches to 
causal inference. Other empirical approaches, such as graphical causal 
modelling242,243, also represent an important stream of work on assess-
ing causal relationships. Such approaches usually represent causation 
as a directed acyclic graph, with nodes as variables and arrows between 
them as suspected causal relationships. In the science of science, the 
directed acyclic graph approach has been applied to quantify the 
causal effect of journal impact factor244 and gender or racial bias245 
on citations. Graphical causal modelling has also triggered discus-
sions on strengths and weaknesses compared to the econometrics 
methods246,247.

Experiments. In contrast to quasi-experimental approaches, labora-
tory and field experiments conduct direct randomization in assigning 
treatment and control groups. These methods engage explicitly in 
the data generation process, manipulating interventions to observe 
counterfactuals. These experiments are crafted to study mechanisms 
of specific interest and, by designing the experiment and formally 
randomizing, can produce especially rigorous causal inference.

Laboratory experiments. Laboratory experiments build counter-
factual worlds in well-controlled laboratory environments. Research-
ers randomly assign participants to the treatment or control group 
and then manipulate the laboratory conditions to observe differ-
ent outcomes in the two groups. For example, consider laboratory 
experiments on team performance and gender composition144,248. 
The researchers randomly assign participants into groups to perform 
tasks such as solving puzzles or brainstorming. Teams with a higher 
proportion of women are found to perform better on average, offer-
ing evidence that gender diversity is causally linked to team perfor-
mance. Laboratory experiments can allow researchers to test forces 
that are otherwise hard to observe, such as how competition influences 
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creativity249. Laboratory experiments have also been used to evaluate 
how journal impact factors shape scientists’ perceptions of rewards250 
and gender bias in hiring251.

Laboratory experiments allow for precise control of settings and 
procedures to isolate causal effects of interest. However, participants 
may behave differently in synthetic environments than in real-world 
settings, raising questions about the generalizability and replicabil-
ity of the results252–254. To assess causal effects in real-world settings, 
researcher use randomized controlled trials.

Randomized controlled trials. A randomized controlled trial (RCT), or 
field experiment, is a staple for causal inference across a wide range of 
disciplines. RCTs randomly assign participants into the treatment and 
control conditions255 and can be used not only to assess mechanisms 
but also to test real-world interventions such as policy change. The 
science of science has witnessed growing use of RCTs. For instance, 
a field experiment146 investigated whether lower search costs for col-
laborators increased collaboration in grant applications. The authors 
randomly allocated principal investigators to face-to-face sessions in 
a medical school, and then measured participants’ chance of writing 
a grant proposal together. RCTs have also offered rich causal insights 
on peer review256–260 and gender bias in science261–263.

While powerful, RCTs are difficult to conduct in the science of 
science, mainly for two reasons. The first concerns potential risks in a 
policy intervention. For instance, while randomizing funding across 
individuals could generate crucial causal insights for funders, it may 
also inadvertently harm participants’ careers264. Second, key ques-
tions in the science of science often require a long-time horizon to 
trace outcomes, which makes RCTs costly. It also raises the difficulty 
of replicating findings. A relative advantage of the quasi-experimental 
methods discussed earlier is that one can identify causal effects over 
potentially long periods of time in the historical record. On the other 
hand, quasi-experiments must be found as opposed to designed, and 
they often are not available for many questions of interest. While the 
best approaches are context dependent, a growing community of 
researchers is building platforms to facilitate RCTs for the science of 
science, aiming to lower their costs and increase their scale. Perform-
ing RCTs in partnership with science institutions can also contribute to 
timely, policy-relevant research that may substantially improve science 
decision-making and investments.

Outlook
Research in the science of science has been empowered by the growth 
of high-scale data, new measurement approaches and an expanding 
range of empirical methods. These tools provide enormous capacity to 
test conceptual frameworks about science, discover factors impacting 
scientific productivity, predict key scientific outcomes and design poli-
cies that better facilitate future scientific progress. A careful apprecia-
tion of empirical techniques can help researchers to choose effective 
tools for questions of interest and propel the field. A better and broader 
understanding of these methodologies may also build bridges across 
diverse research communities, facilitating communication and col-
laboration, and better leveraging the value of diverse perspectives. The 
science of science is about turning scientific methods on the nature of 
science itself. The fruits of this work, with time, can guide researchers 
and research institutions to greater progress in discovery and under-
standing across the landscape of scientific inquiry.
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